
EKoSim programming workshop – summer 2003
Uri Blatt 034211284

EKoSim

An ecological simulation game
For the K Desktop Environment

Project brief

EKoSim programming workshop – summer 2003

Page 2 of 18

EKoSim Copyright (C) 2003

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

The images were taken from Volghan's�"Animal Icons” Copyright 2003 Volghan.

EKoSim programming workshop – summer 2003

Page 3 of 18

Table of Contents

1. Description ... 4
EKoSim User Manual... 5
2. Setup... 5

2.1. Requirements... 5
2.2. Installation ... 5

3. Running.. 5
3.1. Controls.. 6
3.2. Display.. 6
3.3. Simulation preferences ... 8

Project design and future development .. 10
4. List of Files... 10
5. Software Engineering ... 10

5.1. Schematics: .. 10
5.2. Module Description... 11

5.2.1. Simulation Engine ... 11
5.2.2. Ecological Model ... 11
5.2.3. Organism ... 11

6. Logic and application flow ... 12
6.1. Initialization and Simulation Start.. 12
6.2. One Clock Cycle .. 12

7. Future Development ... 13
7.1. Graphics Display ... 13
7.2. Simulation Diversity ... 13
7.3. Code Quality.. 13

Appendix A: Original project definition... 14
Appendix B: Original project design .. 15

EKoSim programming workshop – summer 2003

Page 4 of 18

1. Description

EKoSim is an ecological environment simulation game for the K Desktop Environment.

EKoSim can be used for educational purposes for demonstrating the Lotka-Volterra
mathematical model of interaction between different species in an environment and
displaying the output through the graphical user interface.

In EKoSim the user can choose between several scenarios, adjust the parameters affecting
the environment behavior, and adjust the virtual time “speed”. According to the user
defined preferences the appropriate model is chosen for the simulation. This flexibility
allows for the creation of many different environmental situations so that each time the
simulation is run the outcome is necessarily different.

The output of the simulation is displayed on the screen as an above view of the
environment with the life forms moving on the ground and two graphs displaying the
changes across time in the quantity of the individual life forms.

This document serves as a user manual, a description of the program structure and as a
guide to further development.

EKoSim programming workshop – summer 2003

Page 5 of 18

EKoSim User Manual

2. Setup

2.1. Requirements

In order to install EKoSim Qt 3.1 should be installed on the system. In KDE that is
not an issue, as KDE is Qt based.

2.2. Installation

Decompress the tar.gz file (making sure that the “pic” directory is intact) and run
“make” (or “make all” or "make install") to compile and generate an executable
Run "make clean" to remove all intermediate files.
Run "make dist" to create a tar.gz file containing the code, the *.png files (picture
files), Makefile, readme.txt and the license.
Once the executable “EKoSim” is generated you are ready to go.

3. Running

When EKoSim is run the following window will appear:

EKoSim programming workshop – summer 2003

Page 6 of 18

3.1. Controls

The control buttons: “Start Simulation” begins the chosen simulation
 “Stop Simulation” stops the current running simulation
 “Quit EKoSim” ends the program.
The “Time Units” display – counts the amount of time units passed so far in the
simulation

The Picture to the right of the “Quit Button” button portrays the food chain scheme
used in the current simulation chosen.

3.2. Display

EKoSim has four display fields which depict the simulation status to the user:

The numerical population size display: Displays the numerical value of the population
size for the current clock cycle.

Population against time graph display: Displays a graph of change in population sizes
against time.

EKoSim programming workshop – summer 2003

Page 7 of 18

Population phase plane graph display: Displays a graph of prey population against
predator population.

The final display is the above view of the organism environment: Displays the
organism chasing each other in the environment and visually displays the change in
population sizes. Where the purple “dragons” are the predator, the orange cat is the
prey and the green frog (not shown here) is the second prey/lowest prey (depending
on the simulation scenario).

EKoSim programming workshop – summer 2003

Page 8 of 18

3.3. Simulation preferences

The parameters of the simulation and the simulation scenario can be altered through
the “Setting” tab:

Here using the “Choose Simulation” combo box the user can choose between three
scenarios:

Predator – Prey: Two organisms exist in the simulation, one hunting the other.
Predator –Two-Prey: One predator hunting two different types of prey.
Three – Chain: A three organism linear food chain.
(When a 3 organism scenario is chosen the numerical boxes are activated)

The speed of the simulation may be adjusted using the “Clock Speed” slider.

In the “Initial Population” frame the user can set the initial population sizes for each
organism.

The “Growth Rate” values are the intrinsic rate of change for the organism. For a
predator this value describes the rate of decline in population size in the absence of
food (prey). For the prey this value describes the rate of increase in population size in
the absence of predators.

In the “Effect Strength of Species j on i” frame the values describe the effect of
species on themselves and the others in the scenario. The diagonal values describe the
effect of its own population size on its population decrease (effect of population
density). The value of the second box in the first row (a12), for example, describes the
effect of the prey on the increase of the predators population (if it is larger then more
predators are produced for every prey consumed). The value of the first box in the
second row (a21), on the other hand, describes the effect of the predator on the decline
in the prey population.

EKoSim programming workshop – summer 2003

Page 9 of 18

Generally this can be portrayed as the following equations:

dt
tdN

tNtN

tNrtN
dt

tdN

i
ii

n

i
jijii

i

)(
)()1(

)()(
)(

1

+=+�

�
�

�
�
�

� += �
=

α

Ni is the population size of species i.
ri is the intrinsic rate of change of species i (is positive for prey and negative for the predator).
aij is the interaction coefficient between species i and j (the effect of species j on the growth of
species i. aii is negative.)
n is the number of species.

Here the growth rate values are ri, the “Effect Strength of Species j on i” frame values are
the matching aij and n is 3. From these equations the population sizes are calculated for
each clock cycle. This ecological model is based on the generalized Lotka-Volterra model
(multispecies quadratic model).

The “Defaults” button sets default values for the parameters. These values are also set
when a different simulation scenario is chosen. The user is encouraged to run the
simulation with these default values and then experiment with other values and their
affect on the simulation output.

EKoSim programming workshop – summer 2003

Page 10 of 18

EKoSim

GUI – EKoSim Form

Organisms Display

Simulation

Engine

Clock

Ecology
Model

Project design and future development

EKoSim is written in C++ using the Qt library 3.2 and the Qt designer

4. List of Files

EKoSim.pro - EKoSim Qt project file
ekosimform.ui.h - EKoSim form method source file
ekosimform.ui - EKoSim form
organism.h - class organism header file
organism.cpp - class organism source file
model.h - class model header file
model.cpp - class model source file
main.cpp - main source file
grass.png - canvas grass background pic
dragon.png - dragon pic
cat.png - cat pic
frog.png - frog pic
sim1.png - food chain 1 schema
sim2.png - food chain 2 schema
sim3.png - food chain 3 schema

5. Software Engineering

5.1. Schematics:

EKoSim programming workshop – summer 2003

Page 11 of 18

5.2. Module Description

5.2.1. Simulation Engine

The heart of EKoSim is the simulation engine. The simulation engine is formed
by the majority of the methods in the ekosimForm class. When the simulation is
started an instance of the appropriate model is created, with the user defined
parameters, and the initial amount of organisms is created and displayed on the
"display canvas". With each clock cycle the engine, after receiving the new
population sizes for this clock cycle, decides for each organism its new direction
of movement, and then all organisms are moved on the display canvas.

5.2.2. Ecological Model

The ecological model is based on the generalized Lotka-Volterra model
(multispecies quadratic model):

dt
tdN

tNtN

tNrtN
dt

tdN

i
ii

n

i
jijii

i

)(
)()1(

)()(
)(

1

+=+�

�
�

�
�
�

� += �
=

α

Ni is the population size of species i.
ri is the intrinsic rate of change of species i (is positive for prey and negative for the predator).
aij is the interaction coefficient between species i and j (the effect of species j on the growth of
species i. aii is negative.)
n is the number of species.

At each clock cycle the model derives the state of the system, based on the state
from the previous cycle, and updates the Simulation Engine. Currently 3 model
scenarios are supported:

Predator – Prey: Two organisms exist in the simulation, one hunting the other.
Predator –Two-Prey: One predator hunting two different types of prey.
Three – Chain: A three organism linear food chain.

5.2.3. Organism

Each animal in the simulation is created from the Organism class and is attached
to the display canvas upon creation. With each clock cycle each organism
calculates its distance from every other predator/prey in the environment, this
minimal distance affects the choice of x/y velocity of the organism in the next
clock cycle. Once each organism's new movement has been decided each
organism checks for potential collisions on the canvas and the direction is altered
if necessary.

EKoSim programming workshop – summer 2003

Page 12 of 18

6. Logic and application flow

6.1. Initialization and Simulation Start

Once EKoSim is started the ekosimForm::init() method loads the default simulation
values, creates the clock, the display graphs and the display canvas. There is a
matching ekosimForm::destroy() method for deleting memory allocated in the
initialization.

When the "Start Simulation" button is pressed ekosimForm::StartSimClock() takes
the user defined values from the gui and an instance of the MathModel class is
created. The appropriate amount of each organism is created and attached to the
display canvas at random locations and the clock is started.

6.2. One Clock Cycle

The SimClock is attached to the ekosimForm::TickSimulation() slot. According to the
user defined interval (50-300 ms) this method is called every clock tick. The new
population sizes are retrieved from the MathModel, the graphs are drawn and the
numerical display updated. According to the delta between the population sizes from
the previous tick and the new population sizes animals are added/removed from the
simulation. The delta variables are defined as local static variables, as the delta is
usually numerically small from one cycle to the next, so it is accumulated over the
cycles until it is an integer then the appropriate amount of organisms is
added/removed.

The next step is to calculate the movement of the organism's by calling
ekosimForm::CalculateMove for each organism. This method is divided into three
cases according to the three types of organisms. The organism then calculates (using
Organism::distancefrom method) it's distance from every other organism of the
matching type. When the organism with the minimal distance is found the appropriate
x/y velocity is set. Organism::distancefrom takes into consideration the fact that the
virtual world the simulation is run in is doughnut shaped. So if it finds that an
organism's distance to another organism is closer when calculated "around the world",
the distance is returned with a negative sign. The world is divided into 4 equal
quarters, so when this happens, the 12 possible situations are taken into consideration,
according to the location of both organisms in question (the first is in quarter 1 the
other in 2/3/4 or the first is in quarter 2 the other in 1/3/4 etc. One may note that the
distance between the organisms is shorter when calculated "around the world" only
when they are in different quarters). When each organism's movement direction has
been set the QCanvas method DisplayCanvas->advance() is called.
This method automatically calls the advance() method of each of its animated
QCanvasItems. (Organism class inherits QCanvasSprite which is an animated
QCanvasItems). The movement of the canvas items is performed in two stages
managed by QCanvas. First the item's advance method is called with 0 as a
parameter. In this stage the organism checks of its new (x,y) is outside the canvas, if

EKoSim programming workshop – summer 2003

Page 13 of 18

so it is moved "around the world". Now potential collisions are checked with other
canvas items using a QCanvasSprite class method, if detected then the x/y velocity is
adjusted. In the second stage each canvas item's advance method is called with 1 as a
parameter here the actual movement is performed after updating the organism's
quarter.

7. Future Development

Several issues are far from perfect and should be (with new additions as well) dealt with
in future contribution/development of EKoSim:

7.1. Graphics Display

Originally OpenGL was considered as the library in which to create the above view of
the environment. While working with the Qt library the QCanvas seemed the natural
2D solution and did not require the use of an additional library like OpenGL.
Currently I am not completely satisfied with the graphics display and believe I am not
fully utilizing the potential of QCanvas or it is not suitable for the graphics needed for
EKoSim. The issue of overlapping pixmaps and collision do not produce the graphics
display I desire (maybe using a grid could solve this…). Additionally when over 600
organisms are on the canvas the speed drops significantly (maybe not a graphics
issue…). Another graphics issue is changing the pixmap of the grass background (I
know the color isn’t amazing) and the animal pixmaps.

7.2. Simulation Diversity

What will make EKoSim more attractive (besides its looks) is its diversity. The
addition of other ecological scenarios, other theoretical models for comparison and
more complicated mathematical models will make EKoSim more of an educational
tool.

7.3. Code Quality

This is my first crack at C++, so I am sure it is not elegant and does not always take
the right OO approach to things. The class design needs to be tweaked and there is
redundant code that could be split into separate methods. The source code contains
documentation before each method and inline comments where appropriate, together
with this document I believe it is fairly easy to continue where I left off. Other than
the methods described here the rest are short and very straight forward so the
documentation in the code should suffice.

EKoSim programming workshop – summer 2003

Page 14 of 18

Appendix A: Original project definition

Note: During implementation and code writing several changes were made to the project
and its aims. This appendix is added for comparison and does not hold as the project
definition in its present state.

EKoSim is an ecological environment simulation game for the K Desktop Environment.

EKoSim can be used for educational purposes for demonstrating mathematical models of
interaction between different life forms in a virtual environment and displaying the output
through the graphical user interface.

In EKoSim the user can choose between several environments, a number of different life
forms, apply different attributes to each life form (i.e. position on the food chain,
mobility, reproduction attributes, life expectancy, and initial life form quantity) and
adjust the virtual time “speed”. According to the user defined preferences the appropriate
model is chosen for the simulation. This flexibility allows for the creation of many
different virtual environments so that each time the simulation is run the outcome is
necessarily different.

The output of the simulation is displayed on the screen as an above view of the
environment with the life forms moving on the ground/water (similar to simulation games
– i.e. civilization) with additional graphs displaying the changes across time in the
quantity of the individual life forms. All of the preferences can be defined through the
gui.

There are many biological simulation programs but these programs largely deal with the
issue of evolution (the development of organism characteristics over time affected by
environmental conditions or mutations) not ecology (the interaction of organisms in an
environment based on the amount of resources and organism population). The few
existing ecology simulations are for the Windows\Macintosh environment and are
commercial software, there are no free\open source ecology simulations and none
designed for KDE. In most cases these programs limit the user to the number of life
forms and/or the mathematical model which is simulated and limit the user to predefined
life form attributes. EKoSim is designed to offer the user the flexibility these programs
deny.

EKoSim programming workshop – summer 2003

Page 15 of 18

EKoSim

GUI

Organism
Manager

Simulation

Engine

Clock
Graphics
Display

Ecology
Model

Appendix B: Original project design

Note: During implementation and code writing several changes were made to the project
and its aims. This appendix is added for comparison and does not hold as the project
design in its present state.

� Software Engineering

� Schematics:

� Module Description

� Simulation Engine

EKoSim is a user parameterized graphical simulation of an ecological system,
thus, the heart of EKoSim is the simulation engine. Using the parameters defined
by the user through the GUI the engine chooses the appropriate simulation of the
ecosystem and initializes the ecosystem.

EKoSim programming workshop – summer 2003

Page 16 of 18

•••• Ecological Model

The ecological model is based on the generalized Lotka-Volterra model
(multispecies quadratic model):

dt
tdN

tNtN

tNrtN
dt

tdN

i
ii

n

i
jijii

i

)(
)()1(

)()(
)(

1

+=+�

�
�

�
�
�

� += �
=

α

Ni is the population size of species i.
ri is the intrinsic rate of change of species i (is positive for prey and negative
for predators).
aij is the interaction coefficient between species i and j (the effect of species j
on the growth of species i. aii is negative.)
n is the number of species.

At each clock cycle the engine derives the state of the system, based on the
state from the previous cycle, and updates the Organism Manager.

� Organism Manager

The Organism Manager is in practice the data base of the simulation. It is
initialized by the simulation engine by receiving the organism attributes and
quantities and computes the location of each organism in the ecosystem. At every
clock cycle it receives the state of the ecosystem from the simulation engine and
updates the organism physical location in the ecosystem according to its prior
location and its specific attributes. The manager then updates the graphics display
module.

� Graphical User Interface

The GUI is the receiver of the user preferences relevant to the simulation. After
the user has defined the parameters these are passed on to the simulation engine
and the "game" begins. Inside the GUI is the graphics display sub-module which
provides an above view of the ecosystem and is updated by the organism
manager.

EKoSim programming workshop – summer 2003

Page 17 of 18

� Resources

Currently I am working on this project alone but hope to receive assistance from other
contributors through the project internet page.

� Priorities

• A usable graphical user interface
• A running Simulation Engine
• The Organism Manager
• Graphics Display
• Expanding the number and type of organisms
• Expanding the number and type of ecosystems
• Deriving from the above – Expanding the number of mathematical models the

simulation can handle
• Improve the organism physical location decision mechanism
• A more detailed graphics display

� Problem Handling

One major problem regarding the simulation has arisen - Portraying a mathematical
model onto a graphical display. The data derived from the mathematical ecological
model is only the quantity of each organism as a function of time and not the location
of the organisms inside the ecosystem. When displaying to the screen each organism
has a location but how is this location chosen at each clock cycle?
As can be seen in most ecology simulations this issue is usually dealt with by
randomly positioning each organism on the display with every clock cycle. This
creates a situation where "the rabbit chases the fox" on the screen and so the display
has no actual value in portraying the events inside the ecosystem.

EKoSim tries to deals with this using the Organism Manger. The organism manager
at each clock tick, after receiving the organism quantities for this clock cycle,
relocates each organism according to its location in the previous clock tick and the
organism's attributes (mainly location on the food chain). Introducing new organisms
(by animal breeding) into the environment is done by physically locating the new
organisms near other organisms of the same type. Reducing population (because of
predators) is done from populations that are physically close to a predator. This
causes the organism's location on the screen to have real consequences on the
physical arrangement of the organisms in the future clock cycles making the
simulation display much more accurate and closer to actual life.

EKoSim programming workshop – summer 2003

Page 18 of 18

� Development Infrastructure

The project will be written in the C++ language (as an object oriented language is the
natural choice for such a project) and will be a good chance for me to expand my
knowledge in C to C++. The graphical user interface will designed using the QT
library, which is the natural one used with the K Desktop Environment. The graphical
display will be done with OpenGL.
The development tool will be KDevelop, again as a natural choice in KDE and as it
has a good integration with QTDesigner.

